讲席教授
wxm@eitech.edu.cn
背景介绍:
王晓明本科及硕士毕业于复旦大学,博士毕业于印第安纳大学布卢明顿分校,主要研究方向为应用偏微分方程及其数值方法,。曾任职纽约库朗研究所、普林斯顿高等研究院、爱荷华州立大学、佛罗里达州立大学、复旦大学、南方科技大学。为高层次国家级人才,入职宁波东方理工前为美国密苏里科技大学首任Havener Endowed Chair。
研究领域:
王晓明的主要研究方向是应用和计算数学,特别是和流体运动、湍流、地下水、以及气候变化相关的数学问题,在CPAM、JFM、SINUM、JCP等杂志发表论文100多篇, 在剑桥大学出版社出版专著一本。
教育背景:
1980.9 -1984.7 中国 复旦大学 数学系 学士学位
1984.9 -1987.7 中国 复旦大学 数学系 硕士学位
1991.9 -1996.7 美国 印第安纳大学布鲁明顿分校 数学系 博士学位
工作经历:
2024.8—present, Chair Professor in Mathematics, Eastern Institute of Technology, Ningbo, China
2022-2024, The Gary Havener Endowed Chair and Professor, Missouri University of Science and Technology, Missouri, USA
2018-2022, Chair Professor and Department Chair, Southern University of Science and Technology, Shenzhen, China
2017-2018, Distinguished Professor, Shanghai Center for Mathematics, Fudan University, Shanghai, China
2006-2017, Tenured Professor, Florida State University, Tallahassee, USA
20012 -2017, Department Chair, Florida State University, Tallahassee, USA
2003-2006, Tenured Associate Professor, Florida State University, Tallahassee, USA
2001-2005, Tenured Associate Professor, Iowa State University, Iowa, USA
2002 -2002, Member, Institute for Advanced Study, Princeton, USA
2002 -2002, Research Scientist, Courant Institute, New York University, USA
1998 -2001, Assistant Professor, Iowa State University, Iowa, USA
1996 -1998, Courant Instructor/postdoctoral fellow, Courant Institute, New York University, USA
学术兼职(部分):
Associate Editor 2008--present, Mathematical Methods in the Applied Sciences, John Wiley & Sons.
(http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1099-1476/homepage/EditorialBoard.html)
Member of the Editorial Board, 2012--present, Asymptotic Analysis, IOS press.
(http://www.iospress.nl/journal/asymptotic-analysis/)
Member of the Editorial Board, 2018--present, Communication on Applied Mathematics and Computation (CAMC), Springer.
(https://www.springer.com/mathematics/computational+science+\%26+engineering/journal/42967?detailsPage=editorialBoard)
Section Editor-in-Chief, 2019 -- present, Electronic Research Archive, AIMS.
(https://www.aimsciences.org/journal/A0000-0004/editorialboard)
Member of the Editorial Board, 2022--present, East Asian Journal on Applied Mathematics}, Global Science Press.
(https://www.global-sci.org/intro/editor.html?journal=eajam)
代表性论著:
总体情况
100余篇 SCI论文;1部主要专著和1部其他专著
论著信息及引用数据
Google Scholar:
https://scholar.google.com/citations?user=bwUjjJ4AAAAJ&hl=zh-CN
10篇代表作(*表示通讯作者)
1. X. Wang, A Remark on the Characterization of the Gradient of Distributions, Applicable Analysis, vol 51, 1993, 35-40.
2. X. Wang, A Kato type theorem on zero viscosity limit of Navier-Stokes equations, Indiana Univ. Math. Jour., Vol.50, No.1 (2001), 223-241.
3. R. Temam* and X. Wang, Boundary Layer Associated with the Incompressible Navier-Stokes Equations: the non-characteristic boundary case, J. Diff. Eqs., Vol.179, (2002), 647-686.
4. X. Wang, Infinite Prandtl number limit of Rayleigh-Benard convection, Communications on Pure and Applied Mathematics, Volume 57, Issue 10 (p 1265-1282), 2004.
5. X. Wang, Stationary statistical properties of Rayleigh-Benard convection at large Prandtl number, Communications on Pure and Applied Mathematics, 61 (2008), no. 6, 789--815.
6. X. Wang, Approximation of stationary statistical properties of dissipative dynamical systems: time discretization, Math. Comp., vol. 79 (2010) 259-280.
7. J. Shen, C. Wang, X. Wang*, S. Wise, Second-order convex splitting schemes for gradient flows with Enhrich-Schwoebel type energy: application to thin film epitaxy, SIAM J. Numer. Anal. vol. 50, no.1, pp.105-125, 2012.
8. W. Chen, M. Gunzburger, D. Sun, X. Wang*, An efficient and long-time accurate third-order algorithm for the Stokes-Darcy system, Numer. Math., (2016) 134(4), 857-879
9. W. Lyu, X. Wang*, Stokes-Darcy system, small Darcy number behavior, and related interfacial conditions, Journal of Fluid Mechanics, 922, A4. 02 July 2021. doi:10.1017/jfm.2021.509.
10. Y. Cao, X. Wang*, The Beavers-Joseph interface boundary condition is well approximated by the Beavers-Joseph-Saffman-Jones interface boundary conditions, SIAM Journal on Applied Mathematics, 2022-06