助理教授
shuowang@eitech.edu.cn
背景介绍:
汪硕,宁波东方理工大学(暂名)助理教授、副研究员、博士生导师。2015年获吉林大学学士学位,2020年获北京大学博士学位,先后在美国马里兰大学帕克分校、麻省理工学院开展博士后研究。研究方向为运用第一性原理计算、分子动力学模拟、机器学习及人工智能辅助设计新能源材料,包括但不限于电极材料、电解质材料、催化材料、新型二维材料等,迄今为止在 Nat. Catal., Nat. Chem., Nat. Nanotechnol., Nat. Commun., Angew. Chem., J. Am. Chem. Soc., PNAS, Adv. Mater, Energy Environ. Sci.等杂志期刊发表SCI论文50余篇,他引次数>3200次,其中6篇文章入选 ESI 高被引论文。
研究领域:
1)全固态电池中电解质、电极材料的理论设计
2)固-固、固-液、固-气等多相界面的多尺度模拟
3)人工智能辅开发新能源材料(性质预测模型、反应路径预测模型、材料生成模型)。
教育背景:
2015-2020:博士,材料科学与工程,北京大学
2011-2015:学士,材料物理,吉林大学
工作经历:
2024.07-至今:宁波东方理工大学(暂名)助理教授,副研究员,博士生导师
2022.12-2024.5:麻省理工学院,材料科学系,博士后研究员
2020.08-2022.12:马里兰大学(帕克分校),材料科学与工程系,博士后研究员
代表性论著:
总体情况
50余篇SCI论文,引用3200余次,H-index 26。
Google Scholar:https://scholar.google.com/citations?user=DN3xCtoAAAAJ&hl=en
10篇代表作(†表示共同第一作者)
• Wang S, Liu Y, Mo Y. Frustration in Super‐Ionic Conductors Unraveled by the Density of Atomistic States. Angewandte Chemie. 2023 Apr 3;135(15):e202215544. (Very Important Paper - top 5% ranked by all reviewers; Hot topic: Artificial Intelligence and Machine Learning)
• Wang, S., Fu J., Liu Y., Saravanan R.S., Luo J., Deng S., Sham. T.K. Sun X., M Y., 2023, Design principles for sodium superionic conductors., Nature Communication., 14, 7615,
• Wang, S., Bai, Q., Nolan, A.M., Liu, Y., Gong, S., Sun, Q. and Mo, Y., 2019. Lithium chlorides and bromides as promising solid‐state chemistries for fast ion conductors with good electrochemical stability. Angewandte Chemie International Edition, 58(24), pp.8039-8043. (ESI Top 1%)
• Liang J, Li X, Wang S, Adair KR, Li W, Zhao Y, Wang C, Hu Y, Zhang L, Zhao S, Lu S. Site-occupation-tuned superionic Li x ScCl3+ x halide solid electrolytes for all-solid-state batteries. Journal of the American Chemical Society. 2020 Mar 26;142(15):7012-22. (ESI Top 1%)
• Li, W., Li, M., Chien, P.H., Wang, S†., Yu, C., King, G., Hu, Y., Xiao, Q., Shakouri, M., Feng, R. and Fu, B., 2023. Lithium-compatible and air-stable vacancy-rich Li9N2Cl3 for high–areal capacity, long-cycling all–solid-state lithium metal batteries. Science Advances, 9(42), p.eadh4626.
• Fu, J., Wang, S., Wu, D., Luo, J., Wang, C., Liang, J., Lin, X., Hu, Y., Zhang, S., Zhao, F. and Li, W., 2024. Halide Heterogeneous Structure Boosting Ionic Diffusion and High‐Voltage Stability of Sodium Superionic Conductors. Advanced Materials, 36(3), p.2308012.
• Wang, C., Wang, S., Liu, X., Wu, Y., Yu, R., Duan, H., Kim, J.T., Huang, H., Wang, J., Mo, Y. and Sun, X., 2023. New insights into aliovalent substituted halide solid electrolytes for cobalt-free all-solid state batteries. Energy & Environmental Science, 16(11), pp.5136-5143.
• Fu, J., Wang, S., Liang, J., Alahakoon, S.H., Wu, D., Luo, J., Duan, H., Zhang, S., Zhao, F., Li, W. and Li, M., 2022. Superionic conducting halide frameworks enabled by interface-bonded halides. Journal of the American Chemical Society, 145(4), pp.2183-2194.
• Kwak, H., Wang, S., Park, J., Liu, Y., Kim, K.T., Choi, Y., Mo, Y. and Jung, Y.S., 2022. Emerging halide superionic conductors for all-solid-state batteries: design, synthesis, and practical applications. ACS Energy Letters, 7(5), pp.1776-1805.
• Zhang, S., Zhao, F., Wang, S., Liang, J., Wang, J., Wang, C., Zhang, H., Adair, K., Li, W., Li, M. and Duan, H., 2021. Advanced high‐voltage all‐solid‐state Li‐ion batteries enabled by a dual‐halogen solid electrolyte. Advanced Energy Materials, 11(32), p.2100836.